Inferix Decentralized GPU
  • Getting Started
    • Overview
    • $IFX
    • Resources
    • Brand Kit
    • Frequently asked questions (FAQs)
  • Inferix Whitepaper
    • Introduction
      • Rendering network using crowdsourced GPU
      • Rendering verification problem
    • High-level description of ANGV
      • Noise generation
      • Noise verification
      • Thread model
    • Implementation of ANGV
      • Structure of noise
      • Noise insertion
        • Geometric constraints
        • Distortion region
      • Adaptive noise spreading
      • Verification key generation
      • Noise verification
      • Threat analysis
        • Attacks on verification keys
        • Attacks on noises
        • Attacks on verifiers
      • Performance evaluation
      • Integration
    • Decentralized visual computing
      • Client Apps plugin
      • Client API and SDK
      • Manager node
      • Worker node
      • Decentralized storage
        • Data categories
        • Multi-level 3D polygon data
        • Polygon digester
        • Decentralized storage
        • Decentralized cache
      • Data security with FHE and TEE
        • Verifier data security enhancement with FHE
        • Worker and Manager data security enhancement with FHE
    • Decentralized federated AI
      • Federated learning with TensorOpera
      • Meta LLaMA
      • Stable Diffusion
      • Other AI models
      • Inferix AI
    • Economic model
      • GPU compute market for visual computing and federated AI
      • Inferix vision
      • $IFX token
      • Burn-Mint-Work token issuance model
      • Inferix bench and IBME
        • IB and IBM
        • IBME
      • Price simulation
      • Token metrics and allocation
        • Token allocation
        • Token vesting
      • Governance
      • Node staking and rewards
        • Worker
        • Verifier
        • Manager
        • Penalty pool
      • Node sale and guaranteed node buyback
        • Node sales
        • Guaranteed Node Buyback
    • Future development
      • PoR and NFT minting for graphics creative assets
      • ZKP and PoR communication
      • Inferix RemotePC
      • Rendering professional network
    • References
    • Appendix A: Proofs
    • Appendix B: Price simulation details
    • Appendix C: Hardware requirements for nodes
    • Appendix D: Performance evaluation data
  • Worker Node Guide
    • What is Worker Node
      • How do the Worker Node work
      • Worker Node Rewards
      • How to run Worker Node
      • What is the Worker Node License (NFT)
    • Worker Node Sales
      • Guide to Purchase Worker Nodes
      • Worker Node Sale Timeline
      • Node Supply, Price, Tiers and Purchase Caps
      • Guaranteed Node Buyback
      • How to get Node Whitelisted?
      • Smart Contract Addresses
      • User Discounts & Referral Program
      • Worker Node Purchase FAQ
      • ABKK Collaboration FAQ
  • Verifier Node Guide
    • What is Verifier Node
      • How do the Verifier Node work
      • Verifier Node Rewards
      • How to run Verifier Node
      • What is the Verifier Node License (NFT)
    • Verifier Node Sales
      • Guide to Purchase Verifier Nodes
      • Verifier Node Sale Timeline
      • Node Supply, Price, Tiers and Purchase Caps
      • Guaranteed Node Buyback
      • How to get Node Whitelisted?
      • Smart Contract Addresses
      • User Discounts & Referral Program
      • Verifier Node Purchase FAQ
      • Aethir Node Winners FAQ
  • Inferix MVP
    • Tutorial: MVP for designers & GPU owners
    • PoR MVP
  • Inferix Testnet 2 on Solana & IoTeX [ENDED]
    • Adding GPUs to the Network
      • For GPU providers
      • For GPU providers without funds
      • For users without GPUs
      • For Inferix Node Holders
    • Renting GPU Devices
    • User Revenue Calculation
      • Worker Rewards
      • Rental Revenue
      • Viewing Revenue
      • Claiming Rewards
    • GPU Staking & Unstaking
      • Staking Requirements
      • Unstaking GPUs
    • Guide to get tIFX tokens
    • Why choose Inferix DePIN GPU Solutions?
  • Inferix Testnet 1 on IoTeX [ENDED]
    • Inferix GPU Solutions
    • Adding GPUs to the Network
    • Renting GPU Devices
    • User Revenue Calculation
    • GPU Staking
    • Multiple options to participate in the Staking & Mining Program
    • Special airdrop for Inferix Node Holders! 🎉
    • Guide to get tIFX tokens
    • FAQ
  • Inferix Explorer
  • Team & Achievements
    • Our Story
    • Team
    • Member of Cohort 1 DePINSurf
    • Achievements
  • Community & Events
    • Events
    • Inferix Campaign: "ALLIANCE" (ENDED)
  • Terms of Service
    • Privacy Policy
    • Airdrop Terms of Service
Powered by GitBook
On this page
  • Fourier transform of complex atomic signals
  • Convergence of energies
  1. Inferix Whitepaper

Appendix A: Proofs

PreviousReferencesNextAppendix B: Price simulation details

Last updated 8 months ago

Fourier transform of complex atomic signals

Substitute the atomic signal:

wi(x,y)=Ae2iπ(xXi+yYi) (0≤x<M,0≤y<N)\begin{equation*} w_i\left(x,y\right) = A e^{2i\pi\left(\frac{x}{X_i} + \frac{y}{Y_i}\right)} \ \left(0 \leq x < M, 0 \leq y < N \right) \end{equation*}wi​(x,y)=Ae2iπ(Xi​x​+Yi​y​) (0≤x<M,0≤y<N)​

into the discrete Fourier transform:

F(u,v)=1M×N∑x=0M−1∑y=0N−1wi(x,y)e2iπ(xuM+yvN)\begin{equation*} F(u,v) = \frac{1}{M \times N} \sum\limits_{x = 0}^{M - 1} \sum\limits_{y = 0}^{N - 1} w_{i}(x,y) e^{2i\pi \left(\frac{x u}{M} + \frac{y v}{N}\right)} \end{equation*}F(u,v)=M×N1​x=0∑M−1​y=0∑N−1​wi​(x,y)e2iπ(Mxu​+Nyv​)​

We have

F(u,v)=AM×N∑x=0M−1∑y=0N−1e2iπ(xXi+yYi)e2iπ(xuM+yvN)\begin{equation*} F\left(u,v\right) = \frac{A}{M \times N} \sum\limits_{x = 0}^{M - 1} \sum\limits_{y = 0}^{N - 1} e^{2i\pi\left(\frac{x}{X_i} + \frac{y}{Y_i}\right)} e^{2i\pi \left(\frac{x u}{M} + \frac{y v}{N}\right)} \end{equation*}F(u,v)=M×NA​x=0∑M−1​y=0∑N−1​e2iπ(Xi​x​+Yi​y​)e2iπ(Mxu​+Nyv​)​

Moreover

∑x=0M−1∑y=0N−1e2iπ(xXi+yYi)e2iπ(xuM+yvN)=∑x=0M−1∑y=0N−1e2iπx(1Xi+uM)e2iπy(1Yi+vN)=(∑x=0M−1e2iπx(1Xi+uM))(∑x=0N−1e2iπx(1Yi+vN))\begin{align*} &\sum\limits_{x = 0}^{M - 1} \sum\limits_{y = 0}^{N - 1} e^{2i\pi\left(\frac{x}{X_i} + \frac{y}{Y_i}\right)} e^{2i\pi \left(\frac{x u}{M} + \frac{y v}{N}\right)} \\ =&\sum\limits_{x = 0}^{M - 1} \sum\limits_{y = 0}^{N - 1} e^{2i\pi x \left(\frac{1}{X_i} + \frac{u}{M}\right)} e^{2i\pi y \left(\frac{1}{Y_i} + \frac{v}{N}\right)} \\ =&\left(\sum\limits_{x = 0}^{M - 1} e^{2i\pi x \left(\frac{1}{X_i} + \frac{u}{M}\right)}\right) \left(\sum\limits_{x = 0}^{N - 1} e^{2i\pi x \left(\frac{1}{Y_i} + \frac{v}{N}\right)}\right) \end{align*}==​x=0∑M−1​y=0∑N−1​e2iπ(Xi​x​+Yi​y​)e2iπ(Mxu​+Nyv​)x=0∑M−1​y=0∑N−1​e2iπx(Xi​1​+Mu​)e2iπy(Yi​1​+Nv​)(x=0∑M−1​e2iπx(Xi​1​+Mu​))(x=0∑N−1​e2iπx(Yi​1​+Nv​))​

Using geometric sum formulae:

Hence:

Convergence of energies

is continuous. We define the variable:

By the continuous mapping theorem:

=1−e2iπM(1Xi+uM)1−e2iπ(1Xi+uM)1−e2iπN(1Yi+vN)1−e2iπ(1Yi+vN)=1−e2iπMXi+2iπu1−e2iπ(1Xi+uM)1−e2iπNYi+2iπv1−e2iπ(1Yi+vN)=1−e2iπMXi1−e2iπ(1Xi+uM)1−e2iπNYi1−e2iπ(1Yi+vN)\begin{align*} =& \frac{1 - e^{2i\pi M \left(\frac{1}{X_i} + \frac{u}{M}\right)}}{1 - e^{2i\pi \left(\frac{1}{X_i} + \frac{u}{M}\right)}} \frac{1 - e^{2i\pi N \left(\frac{1}{Y_i} + \frac{v}{N}\right)}}{1 - e^{2i\pi \left(\frac{1}{Y_i} + \frac{v}{N}\right)}} \\ =& \frac{1 - e^{2i\pi \frac{M}{X_i} + 2i\pi u}}{1 - e^{2i\pi \left(\frac{1}{X_i} + \frac{u}{M}\right)}} \frac{1 - e^{2i\pi\frac{N}{Y_i} + 2i\pi v}}{1 - e^{2i\pi \left(\frac{1}{Y_i} + \frac{v}{N}\right)}} \\ =& \frac{1 - e^{2i\pi \frac{M}{X_i}}}{1 - e^{2i\pi \left(\frac{1}{X_i} + \frac{u}{M}\right)}} \frac{1 - e^{2i\pi\frac{N}{Y_i}}}{1 - e^{2i\pi \left(\frac{1}{Y_i} + \frac{v}{N}\right)}} \end{align*}===​1−e2iπ(Xi​1​+Mu​)1−e2iπM(Xi​1​+Mu​)​1−e2iπ(Yi​1​+Nv​)1−e2iπN(Yi​1​+Nv​)​1−e2iπ(Xi​1​+Mu​)1−e2iπXi​M​+2iπu​1−e2iπ(Yi​1​+Nv​)1−e2iπYi​N​+2iπv​1−e2iπ(Xi​1​+Mu​)1−e2iπXi​M​​1−e2iπ(Yi​1​+Nv​)1−e2iπYi​N​​​
F(u,v)=AM×N1−e2iπMXi1−e2iπ(1Xi+uM)1−e2iπNYi1−e2iπ(1Yi+vN)\begin{equation*} F\left(u,v\right) = \frac{A}{M \times N} \frac{1 - e^{2i\pi \frac{M}{X_i}}}{1 - e^{2i\pi \left(\frac{1}{X_i} + \frac{u}{M}\right)}} \frac{1 - e^{2i\pi\frac{N}{Y_i}}}{1 - e^{2i\pi \left(\frac{1}{Y_i} + \frac{v}{N}\right)}} \end{equation*}F(u,v)=M×NA​1−e2iπ(Xi​1​+Mu​)1−e2iπXi​M​​1−e2iπ(Yi​1​+Nv​)1−e2iπYi​N​​​

The random variables Xi,Yi(i∈N)\mathcal{X}_i, \mathcal{Y}_i \left(i \in \mathbb{N}\right)Xi​,Yi​(i∈N) are independent then two variables:

X‾n=X1+…XnnandY‾n=Y1+…Ynn\overline{\mathcal{X}}_n = \frac{\mathcal{X}_1 + \dots \mathcal{X}_n}{n} \quad \text{and} \quad \overline{\mathcal{Y}}_n = \frac{\mathcal{Y}_1 + \dots \mathcal{Y}_n}{n}Xn​=nX1​+…Xn​​andY​n​=nY1​+…Yn​​

are independent for all n∈Nn \in \mathbb{N}n∈N. Since Xi(i∈N)\mathcal{X}_i \left(i \in \mathbb{N}\right)Xi​(i∈N) are independent and identically distributed and Xi∼N(μ,σ2)\mathcal{X}_i \sim \mathcal{N}\left(\mu, \sigma^2\right)Xi​∼N(μ,σ2)

X‾n→n→∞a.sμ\overline{\mathcal{X}}_n \xrightarrow[n \to \infty]{a.s} \muXn​a.sn→∞​μ

by strong law of large numbers; similarly Y‾n→n→∞a.sμ\overline{\mathcal{Y}}_n \xrightarrow[n \to \infty]{a.s} \muY​n​a.sn→∞​μ. Hence

[X‾nY‾n]t→n→∞a.s[X‾Y‾]t{[\overline{\mathcal{X}}_n \quad \overline{\mathcal{Y}}_n]^t} \xrightarrow[n \to \infty]{a.s} {[\overline{\mathcal{X}} \quad \overline{\mathcal{Y}}]^t}[Xn​Y​n​]ta.sn→∞​[XY​]t

for some independent and identically distributed variables X‾∼Y‾∼μ\overline{\mathcal{X}} \sim \overline{\mathcal{Y}} \sim \muX∼Y​∼μ. Let us fix some 0≤u<M0 \leq u < M0≤u<M and 0≤v<N0 \leq v < N0≤v<N, then it is obvious that the function

F(u,v)≜(x,y)↦AM×N(1−e2iπMx)(1−e2iπNy)(1−e2iπ(1x+uM))(1−e2iπ(1y+vN))F_{\left(u,v\right)} \triangleq \left(x,y\right) \mapsto \frac{A}{M \times N} \frac{\left(1 - e^{2i\pi \frac{M}{x}}\right) \left(1 - e^{2i\pi \frac{N}{y}}\right)}{\left(1 - e^{2i\pi\left(\frac{1}{x} + \frac{u}{M}\right)}\right) \left(1 - e^{2i\pi\left(\frac{1}{y} + \frac{v}{N}\right)}\right)}F(u,v)​≜(x,y)↦M×NA​(1−e2iπ(x1​+Mu​))(1−e2iπ(y1​+Nv​))(1−e2iπxM​)(1−e2iπyN​)​
F(u,v) ⁣:Ω→R2ω↦F(u,v)(X(ω),Y(ω))\mathcal{F}_{\left(u,v\right)} \colon \Omega \to \mathbb{R}^2 \\ \omega \mapsto F_{\left(u,v\right)} \left(\mathcal{X} \left(\omega\right),\mathcal{Y}\left(\omega\right)\right)F(u,v)​:Ω→R2ω↦F(u,v)​(X(ω),Y(ω))

for some random variables X\mathcal{X}X and Y\mathcal{Y}Y, then F(u,v)(ω)\mathcal{F}_{\left(u,v\right)}\left(\omega\right)F(u,v)​(ω) is nothing but the Fourier transform of the atomic signal whose the horizontal and the vertical period are X(ω)\mathcal{X}\left(\omega\right)X(ω) and Y(ω)\mathcal{Y}\left(\omega\right)Y(ω) respectively. Let us consider the sequence (F(u,v)n)n∈N\left(\mathcal{F}_{\left(u,v\right)}^n\right)_{n \in \mathbb{N}}(F(u,v)n​)n∈N​ where:

F(u,v)n≜ω↦F(u,v)(X‾n(ω),Y‾n(ω))\mathcal{F}_{\left(u,v\right)}^n \triangleq \omega \mapsto F_{\left(u,v\right)} \left(\overline{\mathcal{X}}_n \left(\omega\right),\overline{\mathcal{Y}}_n\left(\omega\right)\right)F(u,v)n​≜ω↦F(u,v)​(Xn​(ω),Y​n​(ω))
F(u,v)n→n→∞a.sω↦F(u,v)(X‾(ω),Y‾(ω))\mathcal{F}_{\left(u,v\right)}^n \xrightarrow[n \to \infty]{a.s} \omega \mapsto F_{\left(u,v\right)} \left(\overline{\mathcal{X}} \left(\omega\right),\overline{\mathcal{Y}}\left(\omega\right)\right)F(u,v)n​a.sn→∞​ω↦F(u,v)​(X(ω),Y​(ω))

Since we have proved that X‾∼Y‾∼μ\overline{\mathcal{X}} \sim \overline{\mathcal{Y}} \sim \muX∼Y​∼μ then the limit of the sequence is the constant variable F(u,v)(μ,μ)F_{\left(u,v\right)} \left(\mu, \mu\right)F(u,v)​(μ,μ). Also, since F(u,v)F_{\left(u,v\right)}F(u,v)​ is continuous:

∣F(u,v)(X‾n,Y‾n)−F‾(u,v)(Xn,Yn)∣→n→∞0\lvert F_{\left(u,v\right)}\left(\overline{\mathcal{X}}_n, \overline{\mathcal{Y}}_n\right) - \overline{F}_{\left(u,v\right)}\left(\mathcal{X}_n, \mathcal{Y}_n\right) \rvert \xrightarrow[n \to \infty]{} 0∣F(u,v)​(Xn​,Y​n​)−F(u,v)​(Xn​,Yn​)∣n→∞​0

Hence F‾(u,v)(Xn,Yn)→n→∞a.sF(u,v)(μ,μ)\overline{F}_{\left(u,v\right)}\left(\mathcal{X}_n, \mathcal{Y}_n\right) \xrightarrow[n \to \infty]{a.s} F_{\left(u,v\right)} \left(\mu, \mu\right)F(u,v)​(Xn​,Yn​)a.sn→∞​F(u,v)​(μ,μ).

Remark. The proof does not require that XiX_iXi​ and YiY_iYi​ have the same distribution. Indeed, if Xi∼N(μx,⋅)X_i \sim \mathcal{N}\left(\mu_{x},\cdot\right)Xi​∼N(μx​,⋅) and Yi∼N(μy,⋅)Y_i \sim \mathcal{N}\left(\mu_{y},\cdot\right)Yi​∼N(μy​,⋅) then F‾(u,v)(Xn,Yn)→n→∞a.sF(u,v)(μx,μy)\overline{F}_{\left(u,v\right)}\left(\mathcal{X}_n, \mathcal{Y}_n\right) \xrightarrow[n \to \infty]{a.s} F_{\left(u,v\right)} \left(\mu_x, \mu_y\right)F(u,v)​(Xn​,Yn​)a.sn→∞​F(u,v)​(μx​,μy​).