Inferix Decentralized GPU
  • Getting Started
    • Overview
    • $IFX
    • Resources
    • Brand Kit
    • Frequently asked questions (FAQs)
  • Inferix Whitepaper
    • Introduction
      • Rendering network using crowdsourced GPU
      • Rendering verification problem
    • High-level description of ANGV
      • Noise generation
      • Noise verification
      • Thread model
    • Implementation of ANGV
      • Structure of noise
      • Noise insertion
        • Geometric constraints
        • Distortion region
      • Adaptive noise spreading
      • Verification key generation
      • Noise verification
      • Threat analysis
        • Attacks on verification keys
        • Attacks on noises
        • Attacks on verifiers
      • Performance evaluation
      • Integration
    • Decentralized visual computing
      • Client Apps plugin
      • Client API and SDK
      • Manager node
      • Worker node
      • Decentralized storage
        • Data categories
        • Multi-level 3D polygon data
        • Polygon digester
        • Decentralized storage
        • Decentralized cache
      • Data security with FHE and TEE
        • Verifier data security enhancement with FHE
        • Worker and Manager data security enhancement with FHE
    • Decentralized federated AI
      • Federated learning with TensorOpera
      • Meta LLaMA
      • Stable Diffusion
      • Other AI models
      • Inferix AI
    • Economic model
      • GPU compute market for visual computing and federated AI
      • Inferix vision
      • $IFX token
      • Burn-Mint-Work token issuance model
      • Inferix bench and IBME
        • IB and IBM
        • IBME
      • Price simulation
      • Token metrics and allocation
        • Token allocation
        • Token vesting
      • Governance
      • Node staking and rewards
        • Worker
        • Verifier
        • Manager
        • Penalty pool
      • Node sale and guaranteed node buyback
        • Node sales
        • Guaranteed Node Buyback
    • Future development
      • PoR and NFT minting for graphics creative assets
      • ZKP and PoR communication
      • Inferix RemotePC
      • Rendering professional network
    • References
    • Appendix A: Proofs
    • Appendix B: Price simulation details
    • Appendix C: Hardware requirements for nodes
    • Appendix D: Performance evaluation data
  • Worker Node Guide
    • What is Worker Node
      • How do the Worker Node work
      • Worker Node Rewards
      • How to run Worker Node
      • What is the Worker Node License (NFT)
    • Worker Node Sales
      • Guide to Purchase Worker Nodes
      • Worker Node Sale Timeline
      • Node Supply, Price, Tiers and Purchase Caps
      • Guaranteed Node Buyback
      • How to get Node Whitelisted?
      • Smart Contract Addresses
      • User Discounts & Referral Program
      • Worker Node Purchase FAQ
      • ABKK Collaboration FAQ
  • Verifier Node Guide
    • What is Verifier Node
      • How do the Verifier Node work
      • Verifier Node Rewards
      • How to run Verifier Node
      • What is the Verifier Node License (NFT)
    • Verifier Node Sales
      • Guide to Purchase Verifier Nodes
      • Verifier Node Sale Timeline
      • Node Supply, Price, Tiers and Purchase Caps
      • Guaranteed Node Buyback
      • How to get Node Whitelisted?
      • Smart Contract Addresses
      • User Discounts & Referral Program
      • Verifier Node Purchase FAQ
      • Aethir Node Winners FAQ
  • Inferix MVP
    • Tutorial: MVP for designers & GPU owners
    • PoR MVP
  • Inferix Testnet 2 on Solana & IoTeX [ENDED]
    • Adding GPUs to the Network
      • For GPU providers
      • For GPU providers without funds
      • For users without GPUs
      • For Inferix Node Holders
    • Renting GPU Devices
    • User Revenue Calculation
      • Worker Rewards
      • Rental Revenue
      • Viewing Revenue
      • Claiming Rewards
    • GPU Staking & Unstaking
      • Staking Requirements
      • Unstaking GPUs
    • Guide to get tIFX tokens
    • Why choose Inferix DePIN GPU Solutions?
  • Inferix Testnet 1 on IoTeX [ENDED]
    • Inferix GPU Solutions
    • Adding GPUs to the Network
    • Renting GPU Devices
    • User Revenue Calculation
    • GPU Staking
    • Multiple options to participate in the Staking & Mining Program
    • Special airdrop for Inferix Node Holders! 🎉
    • Guide to get tIFX tokens
    • FAQ
  • Inferix Explorer
  • Team & Achievements
    • Our Story
    • Team
    • Member of Cohort 1 DePINSurf
    • Achievements
  • Community & Events
    • Events
    • Inferix Campaign: "ALLIANCE" (ENDED)
  • Terms of Service
    • Privacy Policy
    • Airdrop Terms of Service
Powered by GitBook
On this page
  1. Inferix Whitepaper
  2. Decentralized visual computing
  3. Data security with FHE and TEE

Verifier data security enhancement with FHE

PreviousData security with FHE and TEENextWorker and Manager data security enhancement with FHE

Last updated 8 months ago

Verifier is the component that receives the least amount of data among the three main components of the Inferix network. The input data for a Verifier includes a random subset of the rendering job's output along with the algorithm and key to verify it. Rendering jobs that do not require high data security will be executed by standard Verifiers. Otherwise, those that require high data security will be executed by secure Verifiers. Inferix uses Fully Homomorphic Encryption (FHE) , , technology on secure Verifiers to ensure that end-user data is completely protected from leakage. The hardware requirements for secure Verifiers are higher than those for standard Verifiers, and specifically, these nodes must be equipped with GPUs.

Figure 12:

illustrates the operation of the PoR algorithm combined with FHE. All information related to the verifying task including the rendering output data and verification key is encrypted using FHE and sent back to Manager node. The verification result is then sent back to the Manager node for review, while the Verifier remains completely unaware of the content of the verification process or the verification result.

Figure 12
[5]
[6]
[24]
Rendering flow with PoR and FHE