Inferix Decentralized GPU
  • Getting Started
    • Overview
    • $IFX
    • Resources
    • Brand Kit
    • Frequently asked questions (FAQs)
  • Inferix Whitepaper
    • Introduction
      • Rendering network using crowdsourced GPU
      • Rendering verification problem
    • High-level description of ANGV
      • Noise generation
      • Noise verification
      • Thread model
    • Implementation of ANGV
      • Structure of noise
      • Noise insertion
        • Geometric constraints
        • Distortion region
      • Adaptive noise spreading
      • Verification key generation
      • Noise verification
      • Threat analysis
        • Attacks on verification keys
        • Attacks on noises
        • Attacks on verifiers
      • Performance evaluation
      • Integration
    • Decentralized visual computing
      • Client Apps plugin
      • Client API and SDK
      • Manager node
      • Worker node
      • Decentralized storage
        • Data categories
        • Multi-level 3D polygon data
        • Polygon digester
        • Decentralized storage
        • Decentralized cache
      • Data security with FHE and TEE
        • Verifier data security enhancement with FHE
        • Worker and Manager data security enhancement with FHE
    • Decentralized federated AI
      • Federated learning with TensorOpera
      • Meta LLaMA
      • Stable Diffusion
      • Other AI models
      • Inferix AI
    • Economic model
      • GPU compute market for visual computing and federated AI
      • Inferix vision
      • $IFX token
      • Burn-Mint-Work token issuance model
      • Inferix bench and IBME
        • IB and IBM
        • IBME
      • Price simulation
      • Token metrics and allocation
        • Token allocation
        • Token vesting
      • Governance
      • Node staking and rewards
        • Worker
        • Verifier
        • Manager
        • Penalty pool
      • Node sale and guaranteed node buyback
        • Node sales
        • Guaranteed Node Buyback
    • Future development
      • PoR and NFT minting for graphics creative assets
      • ZKP and PoR communication
      • Inferix RemotePC
      • Rendering professional network
    • References
    • Appendix A: Proofs
    • Appendix B: Price simulation details
    • Appendix C: Hardware requirements for nodes
    • Appendix D: Performance evaluation data
  • Worker Node Guide
    • What is Worker Node
      • How do the Worker Node work
      • Worker Node Rewards
      • How to run Worker Node
      • What is the Worker Node License (NFT)
    • Worker Node Sales
      • Guide to Purchase Worker Nodes
      • Worker Node Sale Timeline
      • Node Supply, Price, Tiers and Purchase Caps
      • Guaranteed Node Buyback
      • How to get Node Whitelisted?
      • Smart Contract Addresses
      • User Discounts & Referral Program
      • Worker Node Purchase FAQ
      • ABKK Collaboration FAQ
  • Verifier Node Guide
    • What is Verifier Node
      • How do the Verifier Node work
      • Verifier Node Rewards
      • How to run Verifier Node
      • What is the Verifier Node License (NFT)
    • Verifier Node Sales
      • Guide to Purchase Verifier Nodes
      • Verifier Node Sale Timeline
      • Node Supply, Price, Tiers and Purchase Caps
      • Guaranteed Node Buyback
      • How to get Node Whitelisted?
      • Smart Contract Addresses
      • User Discounts & Referral Program
      • Verifier Node Purchase FAQ
      • Aethir Node Winners FAQ
  • Inferix MVP
    • Tutorial: MVP for designers & GPU owners
    • PoR MVP
  • Inferix Testnet 2 on Solana & IoTeX [ENDED]
    • Adding GPUs to the Network
      • For GPU providers
      • For GPU providers without funds
      • For users without GPUs
      • For Inferix Node Holders
    • Renting GPU Devices
    • User Revenue Calculation
      • Worker Rewards
      • Rental Revenue
      • Viewing Revenue
      • Claiming Rewards
    • GPU Staking & Unstaking
      • Staking Requirements
      • Unstaking GPUs
    • Guide to get tIFX tokens
    • Why choose Inferix DePIN GPU Solutions?
  • Inferix Testnet 1 on IoTeX [ENDED]
    • Inferix GPU Solutions
    • Adding GPUs to the Network
    • Renting GPU Devices
    • User Revenue Calculation
    • GPU Staking
    • Multiple options to participate in the Staking & Mining Program
    • Special airdrop for Inferix Node Holders! 🎉
    • Guide to get tIFX tokens
    • FAQ
  • Inferix Explorer
  • Team & Achievements
    • Our Story
    • Team
    • Member of Cohort 1 DePINSurf
    • Achievements
  • Community & Events
    • Events
    • Inferix Campaign: "ALLIANCE" (ENDED)
  • Terms of Service
    • Privacy Policy
    • Airdrop Terms of Service
Powered by GitBook
On this page
  1. Inferix Whitepaper
  2. Decentralized visual computing

Data security with FHE and TEE

Data stored within the Inferix network is categorized into two types:

  • Session data which includes input data along with temporary data generated during the rendering process. This data typically exists for a short duration, ranging from a few minutes to several hours.

  • Persistent data which consists of the output from the rendering process and is stored long-term in the system. Examples of persistent data include images and videos after rendering, or VR scenes created after lightmap baking.

Inferix encrypts session data to ensure it remains secure against decryption attacks during data transfer. For persistent data, Inferix offers long-term hosting on its storage system and allows users to share the data publicly or with specific permissions over the Internet.

Our surveys show that, on average, over 80% of 3D model data from graphic artists are public data shared on the internet, while nearly 20% are their original creations and need to be protected. Therefore, Inferix will offer data security level options for end-users to choose from. Higher security level options will incur additional costs for computing resources, storage, and bandwidth, which will be added to the service fees that the end-user must pay.

There are three components related to data security in the Inferix network: the Manager, Worker and Verifier. We will present a security approach for each of these components below.

PreviousDecentralized cacheNextVerifier data security enhancement with FHE

Last updated 9 months ago